

Aspterpenacids A and B, Two Sesterterpenoids from a Mangrove Endophytic Fungus Asperaillus terreus H010

Zhaoming Liu,^{†,⊥} Yan Chen,^{†,⊥} Senhua Chen,[†] Yayue Liu,[†] Yongjun Lu,^{‡,§} Dongni Chen,[‡] Yongcheng Lin,[†] Xishan Huang,^{*,†} and Zhigang She^{*,†,§}

Supporting Information

ABSTRACT: Two new sesterterpenoids, aspterpenacids A (1) and B (2), with an unusual carbon skeleton of a 5/3/7/6/5 ring system were isolated from the mangrove endophytic fungus Aspergillus terreus H010. Their structures were elucidated on the basis of spectroscopic methods, singlecrystal X-ray diffraction analysis, and electronic circular dichroism calculations. A biogenetic pathway for 1 and 2 is proposed. Both 1 and 2 showed no significant antibacterial activity or cytotoxicity at 50 μ M.

C esterterpenoids are a relatively small group of terpenoids with widespread sources, which have been found in the metabolites of terrestrial fungi, lichens, plant, insects, and various marine organisms including fungi, sponges, and coral.^{1,2} They always possess interesting carbon skeletons including linear,³ monocyclic,⁴ polycyclic,^{5,6} and miscellaneous⁷ and exhibit diverse biological activities such as antimicrobial,⁸ cytotoxicity,^{9,10} anti-inflammatory,¹¹ inhibition of nitric oxide production,¹² and enzyme inhibition.^{13,14} In recent years, sesterterpenoids have attracted considerable attention due to their structural conciseness and diverse bioactivity.

In our ongoing search for structurally unique and biologically active metabolites from marine resources, 13-17 a chemical investigation of an endophytic fungus Aspergillus terreus H010 was carried out, which was isolated from the mangrove plant Kandelia obovata. Two unusual pentacarbocyclic sesterterpenoids, aspterpenacids A (1) and B (2), with a 5/3/7/6/5 ring system, were obtained (Figure 1). Herein, the details of chemical and biological characterization of the new compounds are

Aspterpenacid A(1), which was obtained as a colorless crystal, was deduced to possess the molecular formula C27H42O5 based on the HRESI TOF MS at m/z 445.2956 ([M - H]⁻, calcd 445.2954), indicating seven degrees of unsaturation. The IR data exhibited absorptions of carboxyl (1679 cm⁻¹), carboxyl ester (1716 cm⁻¹), and hydroxyl (3481 cm⁻¹) functionalities. The ¹H NMR spectrum (Table 1) of 1 exhibited signals for four secondary methyls at $\delta_{\rm H}$ 0.81 (d, J = 6.6 Hz, H₃-23), 0.90 (d, J = 6.4 Hz, H_3 -24), 0.95 (d, J = 6.7 Hz, H_3 -19), 1.11 (d, J = 7.1 Hz, H_3 -20); two tertiary methyls at δ_H 0.74 (H_3 -25), 2.02 (H_3 -2'); and one oxygen-bearing methine at $\delta_{\rm H}$ 4.73 (d, J = 9.6 Hz, H-1).

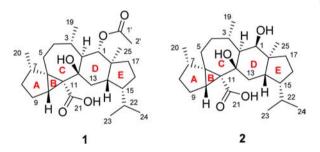


Figure 1. Structures of 1 and 2.

The ¹³C NMR and DEPT spectra (Table 1) revealed 27 carbon resonances composed of two carbonyl carbons and 25 aliphatic carbons including six methyls, eight methylenes, seven methines, and four quaternary carbons. A comprehensive analysis of 1D NMR data and degrees of unsaturation revealed that 1 should be an acetylated sesterterpenoid with a pentacyclic structure. Further analysis of the 2D NMR experiment was carried out to establish the planar structure of 1. The ¹H-¹H COSY spectrum (Figure 2) indicated the presence of three independent spin systems of H-1/H-2/H-3(H-3/H₃-19)/H₂-4/H₂-5, H₃-20/H-7/ $H_2-8/H_2-9/H-10$, and $H_2-13/H-14/H-15(H-15/H-22/H_3-23)$ $H-22/H_3-24)/H_2-16/H_2-17$. The HMBC (Figure 2) showed the correlations from the methyl group (H₃-25) to C-1, C-14, C-17, and C-18, from H-1, H-2, H₂-13, and H-14 to C-12, which established the ring D and E systems. The structure of ring C was deduced by the HMBC correlations (Figure 2) from H₂-13 and

Received: February 2, 2016 Published: March 3, 2016

[†]School of Chemistry and Chemical Engineering and [‡]School of Life Sciences and Biomedical Center, Sun Yat-Sen University, Guangzhou 510275, China

[§]Key Laboratory of Functional Molecules from Oceanic Microorganism, Department of Education of Guangdong Province, Sun Yat-Sen University, Guangzhou 510080, China

Organic Letters Letter

Table 1. 1 H (600 MHz) and 13 C (150 MHz) NMR Data of 1 and 2

	1 ^a		2^{b}	
position	$\delta_{\rm H}$ (mult, J , Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (mult, <i>J</i> , Hz)	$\delta_{ m C}$
1	4.73 (d, 9.6)	83.7 CH	3.68 (d, 2.5)	74.9 CH
2	2.46 (t, 9.6)	48.1 CH	2.10 (m)	45.6 CH
3	1.80 (m)	36.3 CH	1.96 (m)	33.3 CH
4	1.68 (m)	37.9 CH ₂	1.73 (m)	36.0 CH ₂
	1.74 (m)		1.78 (m)	
5	1.86 (m)	32.4 CH ₂	1.76 (m)	31.6 CH ₂
	2.10 (m)		2.15 (m)	
6		42.4 C		42.0 C
7	2.18 (m)	46.4 CH	2.19 (m)	46.1 CH
8	0.90 (m)	31.6 CH ₂	1.02 (m)	31.1 CH ₂
	1.65 (m)		1.62 (m)	
9	1.94 (m)	26.9 CH ₂	1.90 (m)	26.1 CH ₂
	2.11 (m)		2.09 (m)	
10	1.65 (m)	32.0 CH	1.70 (m)	31.0 CH
11		43.5 C		41.9 C
12		77.0 C		76.9 C
13	1.77 (m)	39.3 CH ₂	1.93 (m)	38.8 CH ₂
	2.15 (m)		1.99 (m)	
14	1.92 (m)	41.7 CH	2.13 (m)	35.6 CH
15	1.81 (m)	46.4 CH	1.72 (m)	46.1 CH
16	1.38 (m)	27.8 CH ₂	1.55 (m)	27.2 CH ₂
	1.77 (m)		1.84 (m)	
17	1.37 (m)	40.1 CH ₂	1.15 (m)	33.2 CH ₂
18		47.7 C	1.71 (m)	45.3 C
19	0.95 (d, 6.7)	23.2 CH ₃	1.02 (d, 6.4)	21.5 CH ₃
20	1.11 (d, 7.1)	14.1 CH ₃	1.12 (d, 7.0)	13.8 CH ₃
21		179.9 C		175.5 C
22	1.57 (m)	31.1 CH	1.55 (m)	31.0 CH
23	0.81 (d, 6.6)	21.9 CH ₃	0.84 (d, 6.5)	21.8 CH ₃
24	0.90 (d, 6.4)	24.1 CH ₃	0.94 (d, 6.3)	23.3 CH ₃
25	0.74 (s)	14.1 CH ₃	0.74 (s)	17.2 CH ₃
1'		171.2 C		
2'	2.02 (s)	21.9 CH ₃		

^aMeasured in chloroform-d. ^bMeasured in a mixture of chloroform-d and methanol- d_4 .

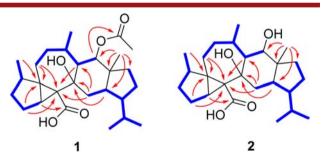


Figure 2. $^{1}H^{-1}H$ COSY (blue lines) and key HMBC (red arrows) correlations of 1 and 2.

H-2 to C-11 and H₂-5 to C-6 and C-11. Furthermore, the correlations from H₃-20 and H₂-9 to C-6 were detected, which constructed a spirane structure composed by ring A and ring C. The presence of the three-membered ring (ring B) was supported by the HMBC correlations from H₂-9 to C-11 and an additional correlation from H-10 to the carbonyl carbon (C-21) located at the carboxyl group (C-21) at C-11. Finally, the chemical shift of C-12 ($\delta_{\rm C}$ 77.0) indicated that a hydroxyl group was attached, and the acetyl group should be linked to C-1 based

on the correlation from H-1 to C-1' in the HMBC spectrum. Hence, the planar structure of aspterpenacid A (1) was elucidated as shown.

The relative configuration of 1 was determined by analysis of the NOESY data (Figure 3). The cross-peaks of $H-2/H_3-19/$

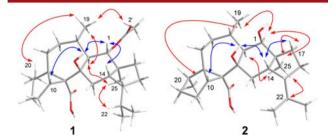


Figure 3. Key NOESY correlations of 1 and 2.

 $2'/H_3$ -25, H_3 -25//H-22, and H_3 -20/ H_3 -19 revealed that they were cofacial and were assigned to be α -oriented. The β -direction of H-14 was supported by the correlations of H-14/H-1. To assign the stereochemistry of the hydroxyl group at C-12, the NOESY experiment was recorded again in DMSO. The correlation of 12-OH/H-14/H-1 revealed the 12-OH was also β -oriented. Meanwhile, a further NOE interaction of H-10/OH-12/H-14 in DMSO indicated the β -orientation of the three-membered ring and H-10. The relative configuration of 1 was further comfirmed by a single-crystal X-ray diffraction experiment using Cu K α radiation (Figure 4).

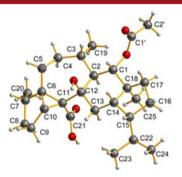


Figure 4. X-ray crystallographic analysis of 1.

To establish the absolute configuration of 1, the electronic circular dichroism (ECD) spectrum of 1 was recorded in MeOH and compared with the DFT-calculated spectra of two feasible configurations 1S,2S,3S,6S,7S,10R,11R,12R,14S,15R,18S and 1R,2R,3R,6R,7R,10S,11S,12S,14R,15S,18R (1 and *ent-1*, respectively) at the RB3LYP/6-311+G(2d,p) level. The calculated ECD spectrum of 1 showed an excellent fit with the experimental plot (Figure 5), which supported the absolute configuration being 1S,2S,3S,6S,7S,10R,11R,12R,14S,15R,18S. Thus, the completed structure of 1 was elucidated as depicted in Figure 1.

Aspterpenacid B (2) was isolated as colorless powder and assigned a molecular formula of $C_{25}H_{40}O_4$ based on the HRESI TOF MS at m/z 403.2848 ([M – H]⁻, calcd 403.2854). The IR absorption (1682 cm⁻¹) suggested that a carboxyl group was observed in 2. Comparison of the 1D NMR spectra of 2 with those of 1 (Table 1) revealed that they shared the same carbon skeleton of sesterterpenoid. Nevertheless, the clearest differences observed were the absence of signals of the methyl (δ_H 2.02) in the ¹H NMR and two carbons, including a carbonyl carbon (δ_C

Organic Letters Letter

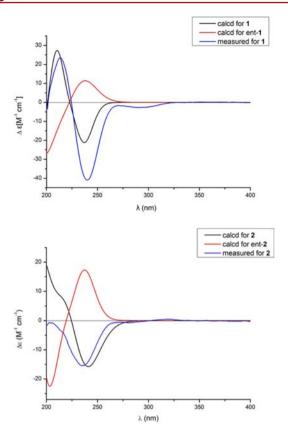


Figure 5. Comparison of the measured ECD spectra of 1 and 2 with the RB3LYP/6-311+G(2d,p) calculated spectrum of their enantiomers in methanol.

171.2) in the ¹³C NMR, which indicated that compound **2** was the deacetylated product of **1**. The gross structure of **2** was further confirmed by the analysis of 2D NMR (Figure 2), as shown in Figure 1.

The stereochemistry of 2 is deduced by the NOESY measured in CD₃OD (Figure 3). The α -orientation of H-2, H₃-19, H₃-20, H-22, and H₃-25 was elucidated based on the NOE interactions of H-2/H₃-19/H₃-25, H₃-25/H-22, and H₃-19/H₃-20, and the β direction of H-14 was supported by the correlations of H-14/H- 17β and H₃-25/H-17 α . However, the correlation between H-1 and H-14 was absent, and an additional NOE interaction of H-1/ H_3 -19 was observed, indicating that H-1 was the α -direction, which was reversed compared with 1. Furthermore, the NOESY spectrum measured in DMSO gave the correlation of 12-OH/H-14/1-OH, revealing that the hydroxyl group at C-12 (12-OH) was β -oriented. Finally, the orientation of the three-membered ring and H-10 was the same as that in 1 and assigned as β oriented, which was confirmed by a NOE interaction of H-10/ OH-12/H-14. All of these facts showed that the stereochemistry of C-1 was different compared with that in 1, and this was further confirmed by the coupling constant value of $J_{1ax/2ax}$ = 9.6 Hz in 1 and $J_{1eg/2ax} = 2.5$ Hz in 2 (Table 1).

The absolute configuration of **2** was determined by the comparison of the ECD spectra recorded in MeOH and the DFT-calculated spectra of two feasible configurations, 1R,2S,3S,6S,7S,10R,11R,12R,14S,15R,18S and 1S,2R,3R,6R,7R,10S,11S,12S,14R,15S,18R (**2** and *ent-2*, respectively), at the RB3LYP/6-311+G(2d,p) level. The calculated ECD spectrum of **1** showed an excellent fit with the experimental spectrum (Figure 5), which indicated the absolute configuration

to be 1*R*,2*S*,3*S*,6*S*,7*S*,10*R*,11*R*,12*R*,14*S*,15*R*,18*S*. Thus, the completed structure of **2** was established as shown in Figure 1.

To the best of our knowledge, aspterpenacids A (1) and B (2) represent a noval carbocyclic skeleton containing an unprecedented 5/3/7/6/5 ring system. The hypothetical biosynthetic pathway for 1 and 2 is proposed in Scheme 1, which is derived

Scheme 1. Plausible Biogenetic Pathway of 1 and 2

from geranylfarnesyl pyrophosphate (GFPP) and followed by a series of cyclizations, rearrangements, and redox reactions. The initial head-to-tail connection of GFPP and cyclization by removing the pyrophosphate moiety give the intermediate a 15-membered ring (structure i). The following formation from the 15/5 ring system to the 5/6/7/3/5 carbon skeleton (structure i) is accompanied by hydrogen migration and carbon cyclization. Finally, a further oxidation, reduction, and acetylation of intermediate iii can generate 1 and $2.^{13,14}$

Aspterpenacids A (1) and B (2) were assayed for their antibacterial effect against three Gram-positive and three Gramnegative strains (see the Supporting Information). However, neither exhibited significant activity at 50 μ M. The cytotoxicity of 1 and 2 was also tested against HeLa and MCF-7 cancer cell lines using the MTT method, but no activity was detected.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00336.

Experimental section, NMR spectra, HRESI TOF MS, and computational details of 1 and 2 (PDF) X-ray crystallographic data for 1 (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: huangxishan13@foxmail.com. *E-mail: cesshzhg@mail.sysu.edu.cn.

Author Contributions

[⊥]Z.L. and Y.C. contributed equally.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (21472251, 41276146, 41404134), the Science & Technology

Organic Letters Letter

Plan Project of Guangdong Province of China (2013B021100011), Special Financial Fund of Innovative Development of Marine Economic Demonstration Project (GD2012-D01-001), China's Marine Commonweal Research Project (201305017), and the Fundamental Research Funds for the Central Universities (14lgjc16) for generous support.

REFERENCES

- (1) Wang, L.; Yang, B.; Lin, X.; Zhou, X.; Liu, Y. Nat. Prod. Rep. 2013, 30, 455–437.
- (2) Gross, H.; König, G. Phytochem. Rev. 2006, 5, 115-141.
- (3) Pedpradab, P.; suwanborirux, J. J. Asian Nat. Prod. Res. 2011, 13, 879-883.
- (4) Ettinger-Epstein, P.; Motti, C.; De Nys, R.; Wright, A.; Battershill, C.; Tapiolas, D. *J. Nat. Prod.* **2007**, *70*, 648–651.
- (5) Tanaka, N.; Abe, S.; Kobayashi, J. Tetrahedron Lett. 2012, 53, 1507-1510.
- (6) Chen, X.; Yuan, Q.; Wang, J.; Hua, S.; Ren, J.; Zeng, B. J. Org. Chem. **2011**, 76, 7216–7221.
- (7) Liangsakul, J.; Pornpakakul, S.; Sangvichien, E.; Muangsin, N.; Sihanonth, P. Tetrahedron Lett. 2011, 52, 6427–6430.
- (8) Woo, J.; Kim, C.; Kim, S.; Kim, H.; Oh, D.; Oh, K.; Shin, J. Org. Lett. **2014**, *16*, 2826–2829.
- (9) Lee, Y.; Wang, W.; Kim, H.; Giri, A.; Won, D.; Hahn, D.; Baek, K.; Lee, J.; Yang, I.; Choi, H.; Nam, S.; Kang, H. *Bioorg. Med. Chem. Lett.* **2014**, 24, 4095–4098.
- (10) Chakraborty, C.; Hsu, C.; Wen, Z.; Lin, C. Curr. Top. Med. Chem. **2009**, *9*, 1536–1545.
- (11) Schumacher, M.; Juncker, T.; Schnekenburger, M.; Gaascht, F.; Diederich, M. *Genes Nutr.* **2011**, *6*, 89–92.
- (12) Wang, W.; Lee, Y.; Lee, T.; Mun, B.; Giri, A.; Lee, J.; Kim, H.; Hahn, D.; Yang, I.; Chin, J.; Choi, H.; Nam, S.; Kang, H. *Org. Lett.* **2012**, *14*, 4486–4489.
- (13) Huang, X.; Huang, H.; Li, H.; Sun, X.; Huang, H.; Lu, Y.; Lin, Y.; Long, Y.; She, Z. Org. Lett. **2013**, *15*, 721–723.
- (14) Xiao, Z.; Huang, H.; Shao, C.; Xia, X.; Ma, L.; Huang, X.; Lu, Y.; Lin, Y.; Long, Y.; She, Z. Org. Lett. 2013, 15, 2522–2525.
- (15) Liu, Y.; Yang, Q.; Xia, G.; Huang, H.; Li, H.; Ma, L.; Lu, Y.; He, L.; Xia, X.; She, Z. J. Nat. Prod. **2015**, 78, 1816–1822.
- (16) Li, H.; Jiang, J.; Liu, Z.; Lin, S.; Xia, G.; Xia, X.; Ding, B.; He, L.; Lu, Y.; She, Z. J. Nat. Prod. **2014**, 77, 800–806.
- (17) Shao, C.; Xu, R.; Wei, M.; She, Z.; Wang, C. J. Nat. Prod. 2013, 76, 779–782.